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Discovering High-Affinity Ligands for Proteins: 
SAR by NMR 
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A nuclear magnetic resonance (NMR)- based method is described in which small organic 
molecules that bind to proximal subsites of a protein are identified, optimized, and linked 
together to produce high-affinity ligands. The approach is called "SAR by NM R" because 
structure-activity relationships (SAR) are obtained from NMR. With this technique, com- 
pounds with nanomolar affinities for the FK506 binding protein were rapidly discovered 
by tethering two ligands with micromolar affinities. The method reduces the amount of 
chemical synthesis and time required for the discovery of high-affinity ligands and 
appears particularly useful in target-directed drug research. 

Drugs are typically discovered by identify- 
ing active compounds from screening 
chemical libraries or natural products and 
optimizing their properties through the syn- 
thesis of structurally related analogs. This is 
a costly and time-consuming process. Suit- 
able compounds with the requisite potency, 
compound availability, or desired chemical 
and physical properties cannot always be 
found. Furthermore, even when such com- 
pounds are found, optimization often re- 
quires the synthesis of many analogs. 

Pharmaceutical Discovery Division, Abboft Laboratories, 
Abboft Park, IL 60064, USA. 
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We now describe a method for identify- 
ing high-affinity ligands that can aid in the 
drug discovery process. The technique, 
which is called "SAR by NMR," is a linked- 
fragment approach wherein ligands are con- 
structed from building blocks that have 
been optimized for binding to individual 
protein subsites (Fig. 1). In the first step of 
this process, a library of low molecular 
weight compounds (1) is screened to iden- 
tify molecules that bind to the protein. 
Binding is determined by the observation of 
15N- or 'H-amide chemical shift changes in 
two-dimensional 5N-heteronuclear single- 
quantum correlation (1 5N-HSQC) spectra 
(2) (Fig. 2) upon the addition of a ligand to 
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an 15N-labeled protein. These spectra can 
be rapidly obtained, making it possible to 
screen a large number of compounds (3). 
Once a lead molecule is identified, analogs 
are screened to optimize binding to this site 
(Fig. 1, step 2). Next, a ligand is sought that 
interacts with a nearby site. Binding to a 
second pocket is determined by observing 
changes in a different set of amide chemical 
shifts in either the original screen or a 
*screen conducted in the presence of the first 
fragment (Fig. 1, step 3). From an analysis 
of the chemical shift changes, the approxi- 
mate location of the second ligand is iden- 
tified. Optimization of the second ligand for 
binding to this site is then carried out by 
screening structurally related compounds 
(Fig. 1, step 4). When two "lead" fragments 
have been selected, their location and ori- 
entation in the ternary complex are deter- 
mined experimentally either by NMR spec- 
troscopy or by x-ray crystallography. Final- 

| 1. Screen for first ligand 

; 2. Optimize first ligand 

4 3. Screen for second ligand 

; 4. Optimize second ligand 

; 5. Link ligands 

Fig. 1. An outline of the SAR by NMR method. 

ly, on the basis of this structural informa- 
tion, compounds are synthesized in which 
the two fragments are linked together (Fig. 
1, step 5) with the goal of producing a high- 
affinity ligand. 

The SAR by NMR method is illustrat- 
ed in the discovery of ligands that bind 
tightly to a protein that forms a complex 
with the potent immunosuppressant 
FK506 (1). This protein, which is called 

HO, 

H3CO 

0 

0 C 
HOO | 

- 'OCH3 
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the FK506 binding protein (FKBP), inhibits 
calcineurin (a serine-threonine phospha- 
tase) and blocks T cell activation (4) when 
it is complexed to FK506. Using NMR spec- 
troscopy, we screened FKBP against our 
library of compounds (5). Many compounds 
were found that bound weakly to FKBP, 
including methyl-3-isoquinolinecarboxylate 
(Kd = 1.0 mM), 4-carbethoxy-3-methyl- 
2-cyclohexen-1-one (Kd = 0.5 mM), and 
2-phenylimidazole (Kd = 0.2 mM). The tri- 
methoxyphenyl pipecolinic acid derivative, 
2, showed the highest affinity for FKBP (Kd 
= 2.0 jjM), which is consistent with earlier 
reports on the avidity of pipecolinic acid 
derivatives for FKBP (6). This compound 
was chosen for study without further optimi- 
zation. The binding site for 2 is the same as 
that of the pipecolinic acid moiety of FK506 
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Fig. 2. A superposition of 15N-HSQC spectra for 
FKBP in the absence (magenta contours) and 
presence (black contours) of compound 3. Both 
spectra were acquired in the presence of saturat- 
ing amounts of 2 (2.0 mM). Significant chemical 
shifts changes are observed for labeled residues. 

(7), as evidenced by the amide chemical 
shift changes of FKBP (Fig. 3). 

To identify molecules that interact with 
FKBP at a nearby site (Fig. 1, step 3), we 
screened our library of compounds in the 
presence of saturating amounts of 2 (8). We 
found an initial candidate (3) that bound to 
FKBP with an affinity of 0.8 mM (Fig. 4) as 
measured from the changes in the '5N- 
HSQC spectrum of uniformly '5N-labeled 
FKBP upon binding 3 (Fig. 2). An analysis 
of these chemical shift changes indicated 
that the binding site for 3 is near the bind- 
ing site for 2 (Fig. 3). 

To probe the structural requirements 
for the binding of benzanilide derivatives 
to the second site (Fig. 1, step 4), we 
obtained analogs of 3 from our corporate 
sample collection and commercial sources 
and tested these compounds for binding to 
FKBP by NMR. From the structure-activ- 
ity relationships (SAR) that are observed, 
it appears that both aromatic rings and the 
amide linkage are important for binding to 
FKBP, as evidenced by the decrease in 
affinity for analogs lacking these chemical 
moieties (9). The para-hydroxyl group 
(Fig. 4, R1) on the aniline ring is also 
important for binding (4); whereas, the 
hydroxyl group on the benzoyl ring at R2 
does not contribute to the binding affinity 
(5). However, when R3 (6) or R4 (7) is a 
hydroxyl group, an increase in binding 
affinity is observed relative to the parent 
compound (8). Thus, both substituted 
para-hydroxyl substituents (R1 and R4) ap- 
pear to contribute to the binding to FKBP. 
The benzanilide containing two para hy- 
droxyls, 9, was not commercially available 

Fig. 3. A surface representation of FKBP showing 
the locations of 2 and 9, as determined from 15N- 
13C-filtered NOE data (11). Residues that exhibited 
the largest chemical shift changes on the binding of 
2, 9, or both 2 and 9 are colored in magenta, cyan, 
and yellow, respectively. Chemical shift changes 
for 9 (cyan and yellow) are those observed on the 
addition of 9 to FKBP in the presence of saturating 
amounts of 2 (2.0 mM). Weighted averaged chem- 
ical shifts were used (Ab(1H, 15N) = zA8(1H)l + 
0.2* A8(15N)j), and colored residues are those for 
which z8(1H, 15N) exceeded 0.15 and 0.05 ppm 
for 2 and 9, respectively. 
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but was readily synthesized (10) and 
served as our best ligand for the second 
site (Kd = 100 jjM). 

A model of the ternary complex of 2, 9, 
and FKBP was generated on the basis of 
isotope-filtered NMR studies (Fig. 3) (I 1). 
In this model, the methyl ester of 2 is close 
to the hydroxyl group on the benzoyl ring 
of 9. Thus, we designed linkers that would 
attach to these groups, span the distance 
between the two fragments, and have no 
steric clashes with the protein. Four com- 
pounds were synthesized (12) in which the 
pipecolinic acid moiety of 2 is connected 
to the hydroxyl group on the benzoyl ring 
of 9 with linkers of different lengths (10 
to 13). In addition, a compound, 14, in 
which the benzoyl ring of 9 is linked at a 
position ortho to the hydroxyl group was 
synthesized (13) to explore a different re- 
giochemical linkage. The binding affini- 
ties of these five compounds for FKBP 
were measured in a fluorescence-based as- 
say (14), and all of the compounds exhibit 
nanomolar affinities for binding to FKBP 
(Fig. 4). 

To determine whether the linked com- 
pounds bind to the same site as the unteth- 
ered compounds, we compared the intermo- 
lecular nuclear Overhauser effects (NOEs) 
observed in the NMR structure of the 
FKBP-14 complex (15) (Fig. 5) to those 

observed in the temary complex composed 
of 2, 9, and FKBP. The pipecolinic acid 
moieties and trimethoxyphenyl groups of 2 
and 14 bind to the same FKBP binding site 
and form hydrophobic interactions with the 
protein (Fig. 5). In addition, the benzani- 
lide moieties of 9 and 14 bind in similar 
locations in the linked and unlinked com- 
pounds (Fig. 5). However, several NOEs 
were observed between the benzoyl ring of 
9 and Gln53, Ile56, and Arg57 which were 
not detected between the linked compound 
(14) and FKBP. This suggests that although 
the benzanilide moieties of 9 and 14 are in 
very similar locations in the two complexes, 
the introduction of the linker causes a small 
shift (approximately 1 to 2 A) in the posi- 
tion of this group. 

As demonstrated here, SAR by NMR is 
useful for discovering high-affinity ligands 
with experimentally derived information. 
Although the small untethered molecules 
might only bind in the micromolar to 
millimolar range to the target protein, the 
binding affinity of a linked compound is, 
in principle, the product of the binding 
constants of the individual fragments plus 
a term that accounts for the changes in 
binding affinity that are due to linking 
(16). Thus, molecules with submicromolar 
affinity can be obtained by linking two 
compounds that bind in the millimolar 

range. In the application that we describe, 
a compound that binds to FKBP with a Kd 
= 19 nM was synthesized by linking two 
molecules with binding affinities of 2 jLM 
and 100 VLM. These two fragments were 
rapidly identified and optimized (less than 
2 months), and only five linked molecules 
were synthesized, all of which exhibit 
nanomolar affinities for FKBP. 

One of the advantages of SAR by NMR 
is the use of 15N-HSQC spectra to detect 
the binding of small, weakly bound ligands 
to an 15N-labeled target protein. Because of 
the 15N spectral editing, no signal from the 
ligand is observed. Thus, binding can be 
detected even at high compound concen- 
trations. This is an important advantage 
over conventional screening assays, such as 
fluorimetric or colorimetric assays, where 
high compound concentrations can give 
rise to large background signals. Another 
advantage of the use of 15N-HSQC spectra 
is the ability to rapidly determine the dif- 
ferent binding site locations of the frag- 
ments, which is critical for interpreting 
structure-activity relationships and for guid- 
ing the synthesis of linked compounds. 

A number of linked-fragment based ap- 
proaches that utilize molecular modeling 
have been described (17). However, com- 
puter-based methods have difficulties in re- 
liably predicting which fragments will inter- 
act with the protein and the manner in 
which they bind. This kind of task is chal- 
lenging because of (i) possible conformation- 
al changes of the protein and ligand when 
complexes are formed, (ii) the difficulties in 
treating bound water and counter ions, (iii) 
the neglect of entropy, and (iv) the use of 
relatively simple force fields (17). To cir- 
cumvent these limitations, the SAR by 
NMR method uses experimentally derived 
information to guide fragment selection, op- 
timization, and linking. An experimental ap- 
proach for mapping the binding surface of 
proteins has been described (18), which in- 

Fig. 4. Summary of the SAR by R4 

NMR method as applied to FKBP. 1l 
Compounds with affinities from 19 N A3 
to 228 nM were obtained from two 

R, 
H R2 

fragment leads with affinities of 2 
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Fig. 5. Ribbon (23) depiction of the structure of 
FKBP (gray) when complexed to 14 (green carbon 
atoms). Shown in yellow are those residues that 
have NOEs to the ligand. 
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volves solving multiple x-ray crystal struc- 
tures of a protein in different solvents. With 
this method, however, only organic solvents 
are examined as potential ligands, and the 
binding affinities are not measured. 

The SAR by NMR method is concep- 
tually similar to combinatorial chemistry 
(19) in that both techniques utilize a 
building block approach in the constrtuc- 
tion of molecules. However, in practice, 
the two are quite different. In combinato- 
rial chemistry, ligand discovery requires 
the preparation and testing of a large num- 
ber of linked compounds. Unfortunately, 
the development of synthetic protocols 
and assays to identify active compounds is 
frequently difficult and time-consuming. 
Furthermore, the need for relatively uni- 
form and straightforward coupling condi- 
tions limits the range of useful molecular 
building blocks and compound diversity. 
In contrast, when SAR by NMR is used, 
only a few compounds need to be synthe- 
sized because the untethered ligands are 
optimized prior to linking. In principle, 
the linked compounds are selected from a 
large virtual library composed of all com- 
binations of the fragments. For example, 
for a protein with two independent bind- 
ing sites, a compound collection contain- 
ing 104 fragments represents a virtual li- 
brary of more than 108 members (20). 
Actual chemistry, however, is highly fo- 
cused on linking only those molecules that 
have been shown to bind to the protein 
and is guided by structural information on 
their relative locations and orientations. 
Furthermore, unlike combinatorial chem- 
istry, the range of small molecules in the 
screening library in SAR by NMR is lim- 
ited only by the requirement for aqueous 
solubility at millimolar concentrations, re- 
sulting in a diverse sample collection of 
compounds. 

Although the SAR by NMR method is 
only applicable to small biomolecules 
(MW < 30 kD) that can be obtained in 
large quantities (2200 mg) (21), many 
small proteins or protein domains fit these 
criteria and may serve as drug targets (22). 
When applied to these proteins, SAR by 
NMR can play an important role in drug 
discovery. Indeed, preliminary use of this 
technique with other proteins indicates 
that the method will be applicable to a 
variety of protein targets and an extremely 
valuable tool in drug research. 
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